SENSORY ANALYSIS OF PLANTS **GROWN IN A CONTROLLED** ENVIRONMENT WITH **APPLICATIONS FOR FOOD PRODUCTION ON-BOARD THE** INTERNATIONAL SPACE STATION (ISS), HUMAN SPACE EXPLORATION VEHICLES AND PLANETARY OUTPOSTS.

Dr Tracey Larkin

EDEN ISS PROJECT HORIZON 2020 FUNDED PROJECT

ars

55

greennouse for 155 the moon & Mars

14 PROJECT PARTNERS

MAIN AIM OF THE PROJECT:

 A critical component of future, human exploration to worlds unknown, will be the supply of edible food for crew members. To develop innovations in cultivating food in closed-loop systems becomes integral to future missions.

EDEN ISS PROJECT AIMS

- 1. EDEN ISS will develop an advanced nutrient delivery system, a k performance LED lighting system and decontaminat
- Develop food quality and safety procedures.
- 3. A mobile container-sized gree facility will be built to demonst validate different key technolo procedures necessary for safe tood production within a closed systematic Antarctica

CLOSED LOOP SYSTEMS

- 1. Optimum nutrients (Hoglands solution)
- 2. Optimum LED lighting
- 3. Optimum C02.

CELLS Research Group:

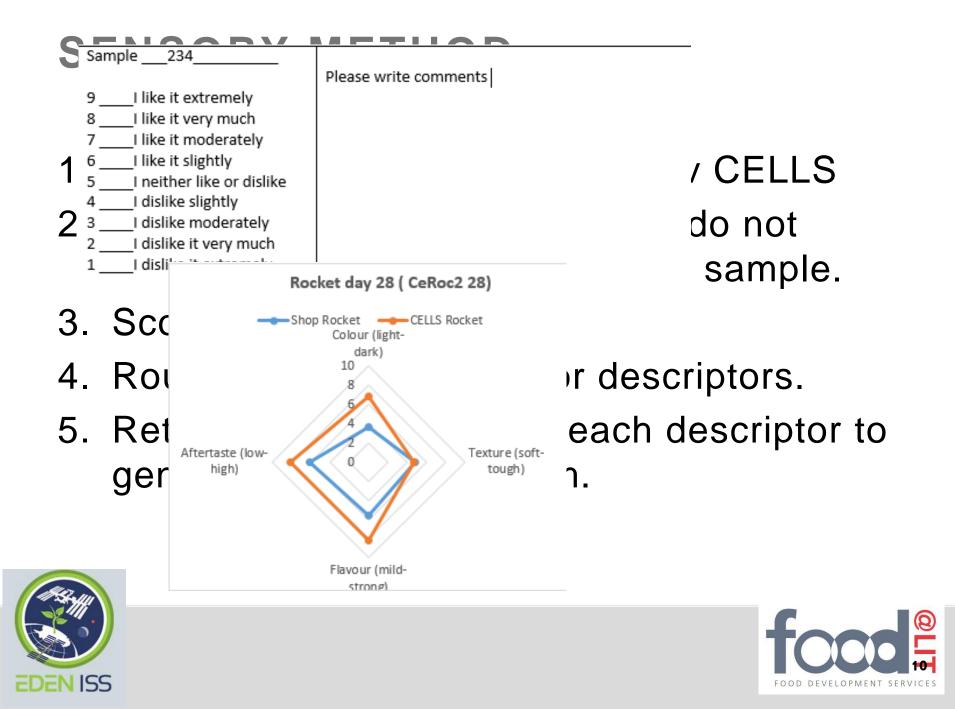
Exploits and develops frontier technologies for the manipulation of plant growth using controlled environmental conditions

► NASA alliance and training

Shannon Applied Biotech Center

Biochemical analysis

Dr Tracey Larkin, Killaloe; Dr Peter Downey and Ms Michelle Mc Keon Bennett, Bunratty pictured in an environmental growth chamber, while working on of the Eden -ISS project. Photograph by John Kelly



FOOD@LIT SENSORY ANALYSIS

- 1. Determine overall acceptability (palatability) for each crop harvested by CELLS.
- 2. Further analyse each crop via descriptive analysis for appearance, flavour, texture and aftertaste to generate quantitative data which describes the similarities or differences for each harvest versus a shop bought control.
- 3. Provide for each harvest a sensory (palatability) result acceptable/unacceptable.

SENSORY RESULTS

SENSORY SAMPLES

SENSORY DATA ANALYSIS & GOALS

- 1. Compare acceptability and descriptive results for significant differences.
- 2. The acceptability score is <u>very important</u> as this will drive out if the significant differences are acceptable or not for the CELLS samples i.e. are the samples <u>palatable</u>.
- 3. Ultimately the goal for the sensory analysis is to guide harvest times and determine if the CELLS samples are palatable.

SENSORY CONCLUSIONS

CELLS code	Sample	Acceptable/ unacceptable	Descriptive analysis
CEL2 35	Red Romaine day 35	Acceptable	Same as shop control.
CEL1 56	Red Romaine day 56 /	Acceptable	CELLS Red romaine at day 56 has a
			tougher texture
CEL3 28	Red Romaine day 28	Acceptable	Same as shop control.
EDLred1 28	Red romaine day 35	Acceptable	Same as shop control.
CERoc1 35	Rocket day 35	Acceptable	¢ELLS rocket is greener
CeRoc2 28	Rocket day 28	Acceptable	¢ELLS rocket is greener with stronger
			flavour and aftertaste.
EDRoc1 28	Rocket day 28	Acceptable	CELLS rocket greener, stronger flavour
			and aftertaste
CERh1 35	Radish day 35	Acceptable	CELLS radish is less crisp with a
			significant aftertaste.
CERh2 28	Radish day 28	Acceptable	CELLS Purple plum has stronger flavou
	Purple plum		& after taste.
CERan1 28	Radish day 28	Acceptable	¢ELLS Anabel has stronger flavour &
	Anabel		after taste.
EDRrax1 28	Radish day 28 Raxe	Acceptable	Same as shop control.
EDRlen1 28	Radish day 28	Acceptable	CELLS Lennox has a stronger flavour.
	Lennox		
CESp1 28	Spinach day 28	Acceptable /	Cells spinach is darker green with a
		N /	tougher texture, stronger flavour and
			aftertaste.
EDSred1 42	Spinach day 42 Red	Acceptable	CELLS spinach is darker with a stronge
	kitten		flavour & aftertaste.

	EDRM1 28	Red mustard day 28	Acceptable	CELLS red mustard is green (rather than purple) with a stronger flavour and aftertaste.
	EDLexp1 42	Lettuce day 42 Crisp green	Acceptable	Same as shop control.
	EDLbat1 42	Lettuce day 42 Bativa	Acceptable	Same as shop control.
	EDSC1 42	Swiss chard 42	Acceptable	CELLS Swiss chard is darker with a stronger flavour & aftertaste (when compared to spinach).
	3469	Tomato	Acceptable	CELLS tomato softer with a lighter skin texture.
	F11202	Tomato	Acceptable	CELLS tomato softer with a lighter skin texture.
	Quatro	Cucumber	Acceptable	CELLS cucumber is juicer.
	Picowell	Cucumber	Acceptable	CELLS cucumber is juicer.
1				

CONCLUSIONS

- Some of these differences measured maybe due to a difference in cultivar between the CELLS and the shop bought controls. However in general the CELLS samples due to the closed optimum protected system produced plants with enhanced colour and flavour. In terms of texture this can be increased e.g. spinach or decreased e.g. tomatoes.
- Regardless of the specific sensory descriptor differences all of the CELLS grown plants are acceptable and palatable. In general the significant differences between the CELLS and the shop bought controls are favourable and may in some cases produce an enhanced product once harvested at an earlier rather than late harvest date.

ANTARCTICA AIMS

1. The plant pultivistion technologies will first he

Radishes and lettuce leaves from the first harvest

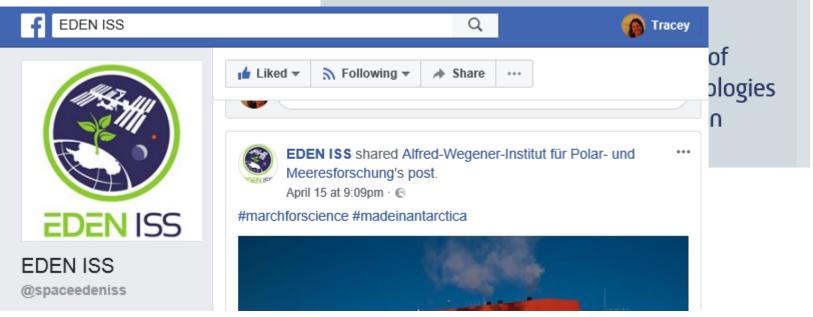
Radianea perore narveat

of the EDEN ISS project will provide year-round fresh food supplementation for the Neumayer Station III crew.

ANTARCTICA SENSORY ANALYSIS

ANTARCTICA SENSORY GOALS

- 1. To determine the palatability of the samples when growth on the Antarctica station by the crew using the optimum technologies developed.
- 2. The sensory analysis will begin this month and the sensory sheets will be returned for data analysis.



@LI

FOR MORE INFORMATION

http://eden-iss.net/

EDEN ISS shared Alfred-Wegener-Institut für Polar- und Meeresforschung's post.

...

April 15 at 9:09pm · 🕞

#marchforscience #madeinantarctica

"knowledge and recognition are the joy and legitimacy of mankind" - our rentals at the station iii send to all participants of the #March for science support gr...

EDEN ISS

FOOD DEVELOPMENT SERVICES

THANK YOU & QUESTIONS?

